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Abstract

A one-dimensional fragmentation analysis that incorporates elastic wave propagation and a cohesive failure process
is presented. An irreversible cohesive law models the internal crack nucleation and opening process, and the elastody-
namic states of the intact material are calculated using the method of characteristics. Both the average fragment size and
the fragment size distribution are obtained. The fragmentation of a model ceramic system is simulated over a wide
range of strain rates, and the calculated results are compared to existing theoretical, numerical and experimental results.
In the high strain-rate regime, the calculated average fragment size is smaller than that predicted by energy models, but
at quasistatic rates the calculated average size is larger than that estimated by such models. The intrinsic mechanisms
leading to these deviations are discussed. The fragment size distributions exhibit similarity under all strain-rate range.
The effect of the distribution of internal defects on the fragmentation and fragment size distribution is also investigated
using this methodology.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramics are usually brittle and have a large population of intrinsic (and extrinsic) defects. A probabi-
listic approach based on the weakest-link theory is generally used to account for the stochastic fracture
properties of ceramics (Weibull, 1939a,b, 1951). However, if the external loading is applied rapidly, as when
an armor ceramic system experiences a blast loading, one nucleated crack does not have sufficient time to
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unload a large neighborhood. Numerous cracks form, propagate and coalesce, and this dynamic multiple
crack formation results in an averaging effect that invalidates the weakest-link hypothesis. A direct result of
dynamic fragmentation is that the failure strength increases and becomes less stochastic when the strain rate
(or loading rate) increases (Hild et al., 2003; Zhou and Molinari, 2004b). Fragment characteristics (such as
average fragment size and fragment size distribution) and their dependence on strain rate and material
parameters are also important issues in dynamic applications. For example, one important objective in
ceramic armor design may be to obtain maximum crack density (corresponding to the smallest fragment
sizes) in the “comminuted” zone, so as to dissipate the kinetic energy of the penetrator to the largest extent.

Typical analytical models for fragmentation use energy criteria to relate material properties and strain
rates to fragment sizes (we refer to these as energy models). The most well known model is that of Grady
(1982), who assumed that the local kinetic energy should be balanced by the energy required for creating
new surfaces. This resulted in the correct prediction of decreasing fragment size with increasing strain rate.
Glenn and Chudnovsky (1986) introduced a correction term accounting for the stored elastic energy before
failure. Their theory is identical to Grady’s in the high strain-rate region where the local kinetic energy term
is dominant, whereas in the very low strain-rate (quasistatic) region the Glenn—Chudnovsky theory predicts
a mean fragment size independent of strain rate.

The energy models are straightforward and reflect some important physics. They produce estimates that
are qualitatively consistent with experimental observations. Nevertheless, there are two major drawbacks to
these models. First, while they predict an average fragment size as a function of strain rate, they do not
provide any information about the fragment size distribution (although Grady et al. (Grady and Kipp,
1985; Grady, 1990) have developed a purely geometric statistical fragmentation model). A second draw-
back of such models is that they usually predict a larger fragment size at high strain rates than observed
in numerical simulations and in experiments (Miller et al., 1999; Wang and Ramesh, 2004). The major limi-
tations of energy models arise from the difficulty of anticipating how much of the total energy should be
dissipated in the creation of fractured surfaces.

A quantitative investigation of fragmentation necessitates detailed consideration of the dynamic fracture
process, including crack nucleation, crack opening and crack interaction. Recent progress in computational
techniques has made it possible to perform numerical simulations of dynamic fragmentation. In these sim-
ulations, the separation of the material is explicitly modeled by cohesive elements (Xu and Needleman,
1994, 1996, Camacho and Ortiz, 1996). Because the cohesive model treats the material separation as a pro-
cess rather than as an instantaneous event, an approach that employs a cohesive model adds an intrinsic
time scale to the energy release process of fracture. Other representative numerical investigations of the dy-
namic fracture and fragmentation phenomena have been conducted by Espinosa et al. (1998), Pandolfi
et al. (1999), Miller et al. (1999), and Zhou and Molinari (2004a,b). Miller et al. (1999) specifically inves-
tigated the effect of high strain rates on fragment size; one significant finding was that the calculated frag-
ment size was an order of magnitude finer than predicted by the energy models.

Motivated by Miller et al.’s results, Drugan (2001) developed an analytical model to investigate the frag-
mentation of a one-dimensional bar under uniform tensile strain rate. Drugan assumed that the fracture of
the bar follows an exponential cohesive process (of the type used by Xu and Needleman, 1994), and that the
fragmentation starts simultaneously at multiple defect points equally spaced along the bar. The correspond-
ing fundamental problem involves stress wave propagation within a finite length bar with mixed boundary
conditions, and solving this problem reveals the process of fragmentation. Drugan assumed that the least
defect interval for which the fragmentation process can be completed corresponds to the fragment size. For
most strain rates, the calculated value of the fragment size was smaller than the energy model, which agrees
with the results of Miller et al. The major limitation of Drugan’s model is the assumption that all cracks are
formed simultaneously at equally-spaced locations. In reality cracks can initiate at many random locations
and at different times. Assuming equally-spaced defects prohibits extracting information about fragment
size distribution, and ignores the existence of intrinsic defect distributions.
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Shenoy and Kim (2003) extended Drugan’s approach to consider the fragmentation of a bar containing
initial defects. They prescribed defects as equally-spaced cohesive node-couples, which open following the
exponential cohesive law. Unlike Drugan, Shenoy and Kim analyzed a long bar that contains many
(1000 or 5000) defects, the strengths of which are randomly distributed over a certain range. As the bar
is deformed, the defects open and communicate with each other via stress wave propagation through
non-defected regions. Thus the fragmentation process is considered as a wave propagation problem cou-
pled with local cohesive fracture. Shenoy and Kim used two approaches to solve this problem. In the first
approach, the status of each flaw was calculated by numerical integration along the characteristic lines.
Each defect is only influenced by its neighboring stress state. This approach gives direct results about frag-
ment size and size distributions. In the second approach (dynamic mean-field theory or DMFT), Shenoy
and Kim introduced a dynamic mean stress, and assumed that this stress controls the growth behavior
of all defects. The dynamic mean stress was calculated by integrating a compatibility equation that links
the mean stress to the mean defect growth. The DMFT approach calculates fragment size that is reasonably
close to the exact solution. However, the fragment size distribution given by DMFT is significantly different
from the first approach, as the DMFT analysis averages the detailed growth behavior of each defect.

We adopt here a numerical approach similar in spirit to Shenoy and Kim (2003) to analyze the fragmen-
tation of a one-dimensional bar, but extend the problem to consider a much wider range of strain rates and
to explicitly incorporate spatial distributions of intrinsic defects (such as are found in real ceramics) along
with various strength distributions. We are able to attain a very wide range of strain rates (including very
low rates) by incorporating a new irreversible cohesive model that provides numerical stability. These two
extensions allow comparisons with experimental data on real ceramics. In what follows, we first briefly de-
scribe the numerical approach, which incorporates multiple mechanisms (elastic wave propagation, local
crack nucleation, opening and complete fracture of the nucleated cracks and closing and contact of par-
tially opened cracks) in a synergistic calculation. Next, we analyze the fragmentation of a ceramic bar,
and examine the rate-dependence of fragment size and fragment size distributions. The computed results
are rigorously compared to available theoretical, numerical, and experimental results. It is seen that in
the high strain-rate region, the average fragment size is smaller than the energy model estimates (which con-
firms previous numerical results), while in the low strain-rate region the calculated average fragment size is
larger than estimated by the Glenn—Chudnovsky model. We then investigate the influence of initial defect
distributions (both spatial and strength) on the fragmentation of a ceramic bar, and show the conditions
under which these defect distributions will have a strong impact on the observed fragment distributions.
Finally, we discuss the physical mechanisms that explain these results.

2. Analytic methodology
2.1. Problem definition and cohesive model

A one-dimensional bar located in the region (—L/2, L/2) along the X-axis is considered. The bar is linear
elastic (Young’s modulus E) before fracture. At time zero (¢ = 0), the bar is intact with uniform stress
and strain &y = 0/E, and is under uniform rate of tensile strain (&,). At any time 7 (# > 0), the mass velocity
v, strain € and stress ¢ of the bar are functions of (X, ), where X is the Lagrangian coordinate. The initial
and boundary conditions of the bar are

v(X,0) = &X, o(X,0)=a, (1)
o(L/2,t) =vr = &L/2, v(—L/2,t) =vL = —&L/2, (2)

where v and vg denote the prescribed left and right boundary velocity.
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As the stress increases with time, a crack will initiate at any point when the following criterion is
satisfied:

o(X,1) = a.(X), (3)

where o (X) is the local strength of the bar. A cohesive law, which links the crack’s cohesive stress oo to
the crack opening distance J..;, describes the growth behavior of the nucleated crack (Fig. 1). We employ a
modified version of the Camacho and Ortiz initially rigid, linear decaying, irreversible cohesive law for the
crack opening/closing behavior. The proposed cohesive law is

co 5c0 R
Teoh _ 1 _2h  for Soon > 0, Seon = Omans D < 1.0,

O S (4)
Ocoh 5max

—=1——=, for dcon < Omax, D < 1.0,

o, O¢

where ¢ is the maximum cohesive force, identical to the local material strength in Eq. (3); d. is the critical
opening distance of the nucleated crack. The maximum crack opening displacement that is attained, d,ax, 1S
used as the internal variable that describes the damage development of the cohesive element. The first part
of Eq. (4) applies when the crack is opening. The second part of (4) applies when the crack’s opening dis-
tance is positive but less than d,,, (closing or reloading). The monotonic-increasing damage number D is
defined as

D = min(dyayx/0c, 1.0). (5)
When D reaches unity, the cracking point is completely broken, leaving the cohesive stress to vanish at any
positive d.on. At this point, the fracture energy G, dissipated by the crack is

Ge(or) = %Y (©

The present cohesive model differs from the original Camacho and Ortiz version in the unloading path. If
the original closing path of Camacho and Ortiz (see Fig. 1) were followed in such a 1D analysis, a patho-
logical situation can arise for the case of the unloading of a slightly opened crack (e.g., a freshly nucleated
crack): such a crack would unload much faster on the closing path than if it were to continue on the open-
ing path, so that a closing crack can unload the local stress completely before an adjacent opening crack has

A O
(o7 Closing Path (present model)
[

Contact
Crack

Fig. 1. Irreversible linear decaying cohesive law derived by modification of the Camacho and Ortiz model. The unloading path is flat
(0con = const. when 0 < .o < dmax). Once the cohesive surfaces make contact, the point is treated as an intact point (d¢on = 0).
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the chance to unload. The result of this pathological behavior is a significant problem with numerical sta-
bility. Note that this pathology does not arise in 2D or 3D analyses. However, for one-dimensional analyses
such as in this work, a modification of the unloading path is necessary to ensure stability. We have per-
formed a number of numerical tests to show that numerical stability is significantly improved for any
unloading path having a slope | ‘h‘%“ | that is lower than the slope of the opening path, namely o/, (the
long-dashed lines in Fig. 1). For the purposes of further computations, we assume that as the crack un-
loads, the cohesive stress retains a constant value. Numerical tests have shown that the results do not
change significantly with other paths that meet this stability criterion. This modification is motivated by
the need for numerical stability in this one-dimensional analysis, and the need is particularly acute at
low external strain rates. Use of this modification allows us to also obtain quasistatic fragment size predic-
tions, which extends the range examined by Shenoy and Kim (2003). Physically, this concept represents a
local damage state that allow the propagation of stress waves through a re-closed node and that allow sub-
sequent damage growth to full failure.

Using this cohesive model, the fragmentation of the bar is a process in which multiple cracks nucleate,
grow or close, and interact with each other. The interactions among cracks occur through stress wave prop-
agation. This problem, which incorporates cohesive fracture modeling, is solved using the finite difference
method along characteristic lines (Appendix A).

3. Effect of strain rate on fragment size

Within this section, we assume that the bar is homogeneous, with the critical failure strength
6. = 300 MPa and the fracture energy G, = 100 N/m. The material parameters assumed are those of a fic-
titious model ceramic, with p = 2.75 x 10° kg/m?, E = 275 GPa, and the elastic bar wave speed ¢ = 10* m/s.
The critical crack opening distance, calculated through Eq. (6), is 0.667 um. The bar is of length L = 50 mm
and is divided into 50,000 segments (AX = 1 um). Preliminary calculations have been conducted to deter-
mine these calculation data (Appendix B). The bar is loaded in tension at a uniform strain rate, and the
response is examined for 18 different strain rates, ranging from 10s™' to 5x 10°s™'. In the high strain-rate
simulations (& = 10° s~1), all of the calculations begin with ¢y = 0 and &, = 0. However, using the natural
state as the initial condition for the low strain-rate simulations (¢ < 5 x 10? s~') would dramatically in-
crease the computation time without significant benefit since only pure elastic response occurs, with no fail-
ure, up to stresses close to the failure stress. Thus in the low rate simulations the initial stress o is set at a
level close to the failure point and a corresponding initial strain value ¢y = o/E is used.

The stress in the bar increases linearly with time as the bar is deformed. Given that the material strength
is uniform, all of the internal nodes eventually crack at the critical stress level (300 MPa). The cohesive fail-
ure process coupled with the wave propagation ensures that only a fraction of the nodes are fully broken
(D = 1.0), separating the bar into fragments. Each fragment contains other nodes that have not been fully
broken, so that each fragment contains some internal damage. Fig. 2 shows an example (& = 500 s~!) of the
damage distribution at the end of the fragmentation process. The locations of the fully broken nodes are
determined by the random nature of round off numerical error. The average fragment size s is calculated
by 5 = L/N¢, where Ny is the number of fragments. For example, the bar shown in the simulation of
Fig. 2 breaks into 51 fragments, so that 5 is 980.4 pum.

The computed variation of the average fragment size s with the applied tensile strain rate & is shown in
the log—log plot of Fig. 3, together with the predictions of existing models for fragmentation. We predict an
average fragment size that decreases smoothly with increasing strain rate. At very high strain rates
(>10° s7") the curve is linear; while at low strain rates (10 s~ in this simulation) the predicted curve is
nearly flat, approaching a constant 5 value.
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Fig. 2. Damage distribution along the 50 mm bar (strain rate = 500 s~ ).
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Fig. 3. Average fragment size vs. strain rate (homogeneous bar without defects).

3.1. Comparison with energy models

Miller et al. (1999) presented expressions for the fragment size in the one-dimensional uniaxial stress case
according to the Grady (1982) and Glenn and Chudnovsky (1986) models.! Using the relationship
G, = Kﬁ /E, these expressions are

24G, v
5= <) . (7)

= -
Pey

Grady:

! The Grady’s, and Glenn and Chudnovsky’s results are written in a 3D setting, but the same arguments can be applied to 1D or 2D
cases. Please see Appendix C for brief deductions.
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Glenn and Chudnovsky: 5= 4\/§ sinh (%), (8)

where
3\ 302 3 G,
=sinh™' - , a=—S f=—%. 9

? [ﬁ <a> oei P 200 o
Note that Glenn and Chudnovsky’s theory gives a quasistatic fragment size estimate:

_ 45 2EG,

squaSiStatiC|Glenn—Chudnovsky = 7 = g2 (10)

C

These theoretical curves are also presented in Fig. 3 for comparison. Our numerical results for the average
fragment size exhibit similar trends to that anticipated by Glenn and Chudnovsky, but are quantitatively
different over the entire strain rate range. In the low strain-rate region (10—10%s™!), our calculated average
fragment size (1250 pm) is about twice the value of Squasistatic|Glenn Chudnovsky> Which is 611 pm. In the high
strain-rate region (>10°s~!), however, our fragment sizes are smaller by a factor of approximately 5. These
differences can be understood in terms of energetics as follows. At low strain rates, where strain energy is
the dominant influence on fragmentation, our results imply that approximately half (certainly not all) of the
strain energy stored in the bar before fracture is used for the creation of new crack surfaces. This is to be
expected, because when the bar begins to break, the sudden stress release causes wave propagation, and so
part of the stored energy is converted into kinetic energy rather than being used for new crack surface cre-
ation. In the high strain-rate region, where the kinetic energy is the dominant source of energy for the cre-
ation of new crack surfaces our results show that additional energy sources, either external work, or the
global kinetic energy must be contributing to create additional fracture surfaces (the Grady and Glenn—
Chudnovsky models assume that only the /local kinetic energy is used for fracture at the high rates).

Fig. 4 presents the computed history of the kinetic energy Kg, the strain energy Pg, the fracture energy
Fg, and the external work W of the system for the “‘quasistatic” strain-rate (¢o = 10 s7!). The stored strain
energy decreases precipitously as soon as the bar begins to fail. Simultaneously, the kinetic energy and the
fracture energy increase, as does the number of fragments (not shown in the figure); the external work has
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Fig. 4. Energy history curves in quasistatic loading case (¢ = 10s™).
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little contribution to the system’s total energy. Once the number of fragments saturates, Fg is constant and
KEg and Pg oscillate (reflecting the elastic waves trapped in the fragments). The conservation of total system
energy gives Pg(0) ~ (Kg + Pg) + Fg where Pg(0) is the stored strain energy before failure. For this quasi-
static case our results show that (Kg + Pg) and Fg each account for approximately 50% of Pg(0) (the frac-
ture energy consumed by the partially opened internal points is only 2-3% of Fg). Since roughly half of Pg
is used to break the bar, the computed average fragment size is twice as large as the Glenn—Chudnovsky
estimate, and so the quasistatic fragment size is given by

) N 8 4EG. 1
Squasistatic — SqUaSismuc’GlennfChudnovsky - ? B o2 ( )
C

3.2. Comparison with dynamic models

Drugan (2001) developed an empirical scaling law that links the non-dimensional fragment size to the
non-dimensional strain rate. Drugan’s theory is based on an exponential-type cohesive law, while we use
a different cohesive law. Since the critical cohesive stress and the cohesive energy are physical quantities,
the characteristic crack opening distance in the exponential cohesive law is related to our J. by §* =
G./ea. = d./2¢ (e is the natural logarithm base). Drugan’s scaling law may be rewritten as

B 1 —0.4264
‘ éo if & 3 2
S S—— 7 S — f & > 0.9120(2eca’ /E>G.), 1
(EG./2ea?) 39 | (2eca}/EG.)| if & > 0.9120(2eco./E*G) (12)
B . 7 —0.66671
S 129990 if & < 0.9120(2eca’ /E>G,) (13)
(EG./2ea?) _(Zecag/EzGc)_ 0= ¢ c)

Drugan’s results are also plotted in Fig. 3, and agree well with our results in the intermediate strain-rate
region. However, Drugan’s results differ from ours at both low and high strain rates. In the high strain-rate
region, Drugan’s fragment size approaches and eventually exceeds the energy model estimates. Our model
predicts a smaller average fragment size at all high strain rates, with a greater slope than the energy model.
This difference between our results and Drugan’s results is because Drugan assumed that the fragmentation
process is initiated simultaneously at all sites and that all fragment sizes are equal, while in our model the
fragmentation process is randomly determined and the fragment sizes can vary. Thus in our model, the
small fragments break within the time of one wave reflection, but the larger fragments can break over a
longer time period, after multiple wave reflections. As a result, many more fragments can be created and
the average fragment size is smaller at high strain rates. At low strain rates (the “quasistatic’’ limit) Dru-
gan’s scaling law does not apply, because it assumes one (corresponding to Eq. (12)) or two (corresponding
to Eq. (13)) wave reflections before complete fracture. When more wave propagations are involved, the
analysis becomes complex. Drugan did provide the following solution for the average fragment size when
the loading rate is very slow:

_ EG (14)

Squasistatic ‘ Drugan &2 )
c

which is half the Glenn—Chudnovsky quasistatic size and one-fourth of our model prediction. Among the
quasistatic fragment size predictions: (10), (11) and (14), we consider our value (11) to be the best estimate
since it explicitly handles the energetics and the dynamics, as well as allowing for random fragmentation
and variable fragment size. Finally, we note that Drugan’s results show discontinuities (jumps) in the
5—¢&y curve as a result of transitions between the n-wave reflection and (n + 1)-wave reflection cases. Our
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analysis does not have this drawback. As can be seen in Fig. 3, except for some minor numerical fluctua-
tions, the calculated 5-&, relationship is a smooth, monotonically decreasing curve.

The model of Shenoy and Kim (2003) has many of the features of our analysis, and their computed aver-
age fragment size displays the same trend with strain rate as in our results in the intermediate to high strain
rates. Although direct comparisons of our results with those of Shenoy and Kim are difficult because both
the cohesive model and the material parameters used in our analysis differ significantly from those used by
Shenoy and Kim, we can compare these results indirectly using Grady’s estimation as a common measure.
Shenoy and Kim’s fragment size is dependent on the initial defect weakness, Aco/co. The case Agy/
0o = 107" is close to our results shown in Fig. 3. In the strain-rate region 6 x 10°~10° s~', Shenoy and Kim’s
fragment size is about 1/20 to 1/4 of Grady estimation. Simultaneously, our fragment size is 1/20 to 1/4 of
Grady estimation in strain-rate region 5 x 10°-10* s™'. Considering the fact that our material is more duc-
tile (with larger G, and smaller ¢, values) than Shenoy and Kim’s, the two results are quite close to each
other when the strain rate is translated one order of magnitude. Shenoy and Kim did not report any results
in the quasistatic case and thus the comparison is limited to intermediate to high strain rates.

3.3. Energy dissipated by partially opened cracks

As shown in Fig. 2, residual damage exists along the fragmented bar after fragmentation finishes. These
damaged but not fully broken points dissipate additional energy during the fragmentation process. For the
cohesive law illustrated in Fig. 1, the energy dissipated by a cohesive point with damage number D is the
area of the shaded region:

eoh = D*Ge. (15)

During the fragmentation process, the total fracture energy Fg and the part of it consumed by partially
opened cracks Fp are
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Fig. 5. Ratio of cohesive energy consumed by partially broken nodes with total cohesive energy.
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N-1 N-1
FE = choh(i) = GCZD(Z)Z’
i=1 i=1
N—1 N—1 (16)
Fp=Fg—G. Y  D(i)’ =G> D(i)’ = (N; - 1)1 .
i=1,D(i)=1 i=1

The ratio of damage energy Fp to total cohesive energy Fg is plotted against strain rate in Fig. 5. It is seen
that there is an increasing trend of internal damage generation for increasing loading rate. Within the quasi-
static region (& < 500 s7"), Fp/Fg is less than 5%, so that the energy dissipated by the damaged internal
nodes is negligible. However, at the high strain-rate end (5 x 10°s™!), Fp/Fg is approaching 50%, so that
the energy dissipated in the damaged nodes is very significant at high strain rates.

4. Statistics of fragment size

A significant merit of the present analytical approach is that fragment size statistics are the output of the
calculation. Although all the internal points have identical material properties, the size of each fragment is
not necessarily the same because of the random nature of the fragmentation process. This section discusses
the statistical characteristics of fragment sizes. Although the statistical data are all presented for a single
material, the results can be extended to other materials with different parameters—such an extension is pro-
vided in a subsequent paper for reasons of space.

Results from six fragmentation simulations, with strain rates 10's7h 102571, 10° 7L 10%s71, 10757,
and 10°s7!, are analyzed. The total fragment numbers Ny are 40, 43, 66, 128, 433, and 2397 respectively.
The size of each fragment is independent of the fragment location. The length of fragment i is denoted by s;,
and the average fragment size is then:

Np

As the strain rate increases, the average fragment size decreases, while the relative size span increases. A
function called the cumulative fragment number, @(s), is defined as the number of fragments that have sizes
larger than s (Grady and Kipp, 1985):

®(s) = Z:L(s,- > s), (18)

where L(S) is the logical function. L(S) = 1 if statement S is true, and L(S) =0 if S is false.
@(s) is a monotonically decreasing function, with two boundary values:

®(s)) =Ny, P(c0) =0, (19)

where sy is the minimum fragment size. The number of the fragments within the size range s — s + ds is
—®'(s)ds. Making use of the boundary values shown in Eq. (19), we have:

L= / "5 (s)] ds = st + / " o(s)ds. (20)

Eq. (20) is a geometric property of the cumulative fragment number function.

At each strain rate, we normalize the size of each fragment s; by the average size s, then sort these values
in descending order to obtain the cumulative fragment number function @(s/5s) = ®(s). The resulting
®(s/5) functions are presented in the semi-logarithm plot of Fig. 6a for all strain rates, together with
the total number of fragments that are developed. Several observations are made from this figure:
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Fig. 6. (a) Cumulative fragment number curves for a range of different strain rates; (b) normalized fragment number curve for all strain

rates.

. Higher strain rate loading results in smaller fragment sizes (see Fig. 3) and wider normalized fragment
size distributions. B

. For all strain rates, the log(®) vs. s/s curves exhibit a similar convex shape. This is different from the
suggestions of Grady and Kipp (1985) that the fragment distribution is either a linear exponential type
(a straight line in the log(®)—s/5 plane), or a bilinear exponential type (a concave curve in the log(®)-s/s
plane).

. In our simulation, the smallest possible fragment size is AX (1 um). However, the chance that these small
fragments appear is very small (we observe one or two events in the high strain-rate cases). Most of the
fragments are larger than a critical size (so, which varies with rate of loading) and much larger than AX.
. The normalized minimum fragment size s, /5 seems to be essentially independent of strain rate, at a value
of about 0.25. We note that although the normalized value s, /s is constant, the minimum fragment size
so decreases with strain rate.
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Based on these observations, we propose that the cumulative fragment number function @(s) takes the
following form:

N (s < 50),
{Nf exp {— (F(IT/"))"C:—jg)”} (s > s0), (21)

where 7 is a positive index that controls the fragment size distribution and I' is the Gamma function. The
case with so = 0.0, n =1 represents the linear exponential distribution that has been used by Grady and
Kipp (1985). Evidently Eq. (21) satisfies the boundary conditions and the geometric property (Egs. (19)
and (20)). It appears (Fig. 6a) that so/s(= a) is independent of strain rate. We assume that # is also inde-
pendent of strain rate. This then results in a unified relation between @ /Ny and s/s for all strain rates, and
we plot the computation results as data points in the log(®/N;) — s/5 space in Fig. 6b. We find that these
points lie approximately along a universal power curve:

- [rusmiss —a
n(l —a)

&(s) =

(s/s)

N

In

]" (s > s0)- (22)

The parameters that best fit the numerical data are a = 0.25, n = 1.59. Substituting these parameters into

Eq. (21), the fitted curves @(s) corresponding to different strain-rate cases are drawn in Fig. 6a (dashed

lines). It is seen that with only two parameters, the cumulative fragment number functions are successfully

captured. The corresponding unified probability density function (UPDF) of the normalized fragment size
s/5 is

@' (s)ds 0 ] , (s < 50),

UpPpE= - { n(s/s = ay'™! [2] " exp { - [Llehs=a] "L (s> ) ®)

Nid(s/s)
This probability density function is found to adequately represent the numerical results for all normalized
fragment sizes (for all strain-rate cases, over 3100 data points in total).

We now apply the unified PDF function to estimate fragment size distributions for different strain rates
from quasistatic (&, < 10% s™') to 10°s™!, and the resulting fragment size distributions are shown in Fig. 7a.
The shapes of the fragment size distribution curves and the changes in shape of the fragment size distribu-
tions with strain rate are qualitatively similar to the experimental results of Lankford and Blanchard (1991)
and Wang and Ramesh (2004). In Fig. 7b we plot the fragment size (particle length) distributions of Wang
and Ramesh (2004), obtained for SiC-N ceramics that are crushed under quasistatic (MTS) or impact
(Kolsky bar) loadings. We note that in the experiments the SiC—N specimen generally crushes under a com-
pressive stress (about 6 GPa) that is one order higher than the tensile strength (around 300 MPa). Therefore
significant strain energy has been accumulated in the specimen before it fails. Although the failure of a speci-
men is triggered by compressive fracture, this compressive failure always accompanies a rapid energy
release that results in dynamic tensile fragmentation. Since the specimen breaks into many pieces simulta-
neously, it is likely that the Weibull modulus of the material (which is derived from its quasistatic tensile or
bendbar strength and is related to the largest intrinsic defect) has only a minor effect on the fragmenta-
tion behavior.? Therefore the simulations in this paper remain qualitatively reasonable for examining the
compressive fragment statistics, particularly at higher strain rates where the kinetic energy is the dominant
term.

2 We will discuss this issue further in the next section.



F. Zhou et al. | International Journal of Solids and Structures 42 (2005) 5181-5207 5193

°-“°B}|, | strain Rate = 100,000 5°
i
0.007!:
71} 11 ! Strain Rate = 1025
5 0.008 ! : — — - Strain Rate = 103s"!
5 1! 3 - Strain Rate = 10*s”
72 0.005 J! \ —-—- Strain Rate = 105s™
k7] : i
Q o004 |
) 1 I ==
'E Ei E | Strain Rate = 10,000 s ]
@D g0z |,
o ]
E i L
£ ooezd ¥ [ strain Rate = 1000 s |
o dr .
(8t
o el -'-k-/ | Strain Rate = 100 s
o001l b o
Jj = A /
Ja- > d
0.000 4 e ———
0 500 1000 1500 2000 2500 3000
(a) Fragment Size (um)
:‘(10-3
8 iy
MTS _ Kolsky
Kolsky mean = 25371 151.72
std = 13367 78.911
sl e = 13367 70011
5k
L
o 4
o
3 +
2 -
1F
I
0 L L n = o, = I PUg a
-200 0 200 400 600 800 1000
(b) Length of particle (um)

Fig. 7. (a) Fragment size distribution for various strain rates using the unified probability density function; (b) size distributions of
SiC-N under quasistatic (MTS) and dynamic (Kolsky bar) compressive loadings (Wang and Ramesh, 2004).

5. Effect of internal defects distribution

In the previous section, we assumed that the bar was homogeneous and thus all internal points along the
bar were activated as cohesive points when the loading level exceeded the local strength level (everywhere
o.). In this section, we investigate the influence of internal defects distribution. Our numerical scheme
allows the consideration of microstructure through a local strength distribution ¢(X) and a fracture energy
distribution G.(X). A defect is characterized as a single point or a group (zone) of points where the local
failure strength is reduced. We consider two kinds of spatial distributions of these strength defects: defects
that are equally spaced along the bar, and defects that are randomly distributed along the bar. In the latter
case we also allow the defect strengths to be randomly distributed, whereas for the equally-spaced defects,
the defect strengths are deterministic.
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5.1. Equally-spaced defect distributions

We consider two approaches to characterize an equally-spaced defect microstructure. In the first ap-
proach a defect is treated as a single isolated weakened point (a point defect). In the second approach a
defect is treated as a weakened zone where the strength of a point is correlated to its immediate neighbors
(a zone defect). Fig. 8 illustrates these two defect models. We assume that at the weakest defect points both
the local strength ¢, and the fracture energy G, are reduced by a factor of 50%. A total of 50 internal defect
points are equally spaced at 1 mm intervals. In the point defect model the isolated defect points are located
at (£0.5mm, £1.5mm, ..., and £24.5 mm). In the zone defect approach the local strength linearly in-
creases from 150 MPa (the weakest point) to 300 MPa (the intact material) over a span of 0.25 mm. The
zone defect distribution can be viewed as a weakened microstructure with a characteristic length of 0.5 mm.

5.1.1. Effect of equally-spaced point defects on fragmentation
Consider first the effect of equally-spaced point defects on the fragmentation process. Fig. 9 presents the

histories of the average stress (0, (¢) = N%l Zﬁlai(t)) across the bar and the number of fragments for three

different strain rates (& = 10°s7!, 10*s7!, and 10° s*]). In each case, when the bar begins to deform, the
average stress increases linearly with time (and is initially equal to the local stress). At some time the local
stress at the point defects reaches their critical strength level of 150 MPa, and cracks are initiated at these
points. What happens subsequently differs for each rate of deformation.

At the relatively low strain rate of 10% s~' (Fig. 9a), the average stress begins to fall almost immediately
after the point defects begin to decohere, and so the effective failure strength of the bar (the peak average
Stress opeak = Max[oave(?)]) is approximately 150 MPa (which is the defect strength). Because of the cohesive
model and the wave-mediated communication between points, it takes some time after the defects are ini-
tiated before full fragments develop, and only 28 of the point defects develop into completely fractured
points. The final fragment number in this case is 29.

For a higher strain rate of 10* s~!, we obtain the results shown in Fig. 9b. Now the average stress in the
bar continues to rise even after the point defects have initiated failure, as the strain rate is higher. Eventu-
ally the unloading waves released from the defects causes the average stress to reach a maximum, and this
peak strength is now about 200 MPa. The bar itself is not broken until a later time, when in this case all 50
of the point defects are completely broken, so that the number of fragments becomes 51. This is a special
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Fig. 8. Local strength distribution along the bar with no defects, equally-spaced point defects, and equally-spaced zone defects. Only
part of the bar (—5 mm < X < 5 mm) is shown.
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case, because the cracks are only initiated at the weak points, all develop into complete fracture (unlike at
the lower rate), and no further fragmentation occurs (unlike at the higher rate described et seq.). No further
fragments are created, even though waves continue to reverberate within the fragments (the average stress
in the bar is observed to oscillate due to these internal wave reflections). The fragment number equals ex-
actly the number of defects, and the fragment size equals exactly the defect spacing.

When a very high strain rate of 10° s~ is considered, the results shown in Fig. 9c are obtained. Now the
load in the bar rises very quickly, and a peak strength (failure strength of the bar) of approximately the
intact strength (300 MPa) is developed. The elastic portion of the response occurs over a time so short that
it is not evident in this figure. Sufficient kinetic energy is now available to create many fragments. As before,
after the local stress level exceeds 150 MPa, the 50 defect points initiate, and are eventually developed into
complete fracture points (thus, the fracture number first reaches a level of 51). Many more fragments are
subsequently developed within the bar at initially intact full strength locations. The final fragment number
in this case is about 2080.

We have conducted simulations for 18 loading cases for a bar with such equally-spaced point defects,
with strain rates ranging from 10 s~ to 5x 10° s~'. The results are presented as the circles in Fig. 10, which
shows the logarithm of average fragment size 5, and the peak stress opcak, as functions of the logarithm of
the strain rate. The figure also presents results from other defect distributions, presented et seq. Examining
only the equally-spaced point defect results, it appears that there exist three strain-rate regions that influ-
ence the fragment size differently:

1. The quasistatic region (& < 250 s7!). In this region, the fragments are formed by part of the internal
defect points that are completely broken. Other internal defect points nucleate as damaged points but
are not fully opened. The failure strength of the bar is approximately the minimum value of the local
strength, a.,;, (=150 MPa), so that the weakest link of the bar controls the failure strength. The average
size of the fragments is approaching the quasistatic estimate, Eq. (11), which assumes that half of the
stored energy has been converted to fracture energy.

2. The kinetic region (& > 25,000 s~'). In this region, the fragments are formed from cracks that appear at
both defect points and intact points. When the strain rate is increased, the cracks initiated at intact loca-
tions overwhelm the cracks initiated at defect points. As a result, fragmentation is mainly a kinetic pro-
cess and the influence of internal defects is negligible. The log(s)—log(éy) curve is basically a straight line,
which is very close to the line we obtained for the intact bar. The failure strength of the bar is approx-
imately the local strength of the intact points, g,.(=300 MPa);

3. The defect-controlled region (250 s~' < & < 25,000 s "). In this region the fragments are exclusively
formed at the defect points. A/l defect points are fully opened in the final stage. In other words, the inter-
nal defect distribution completely controls the fragment size. The failure strength within this region is
between o, and o,.«, exhibiting a rate-hardening trend. Note that the homogeneous, intact material
exhibits no rate-dependency of the failure strength in these simulations. Thus the apparent rate-harden-
ing phenomenon observed in Fig. 10b results from the existence of internal defects within the material.
This observation agrees with our previous numerical investigation on SiC-N ceramics (Zhou and
Molinari, 2004b) and with the generally accepted explanation for experimental observations on such
ceramics, albeit in other stress states (Wang and Ramesh, 2004).

Note that the strain-rate span of the defect-controlled region, namely 250-25,000 s, is subjected to
change as the prescribed defect spacing varies. When the defect spacing decreases, the defect-controlled region
as a whole will move rightwards to the higher strain-rate region. When the defect spacing increases, this region
moves leftwards to the lower region. If the defect spacing is larger than the quasistatic fragment size estimated
in Eq. (11), the defect-controlled region eventually swallows the quasistatic region. In this case, the number of
quasistatic fragments is smaller than that estimated by using Eq. (11), due to the lack of fracture seeds.
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Fig. 10. Average fragment size (a) and macroscopic failure strengths (b) vs. strain rate.

5.1.2. Results for equally-spaced zone defects

We now report the simulation results for the bar with equally-spaced zone defects. The typical history
curves of the fragment number Ny and the average stress g, are similar to those in the single-point defect
case (Fig. 9a—). The computed log(s)—log(&) relationship and the opc.—log(é) relationship are plotted as
upward triangles in Fig. 10a and b respectively. The dependence of the average fragment size on the strain
rate is observed to be essentially identical for the equally-spaced point defects and the equally-spaced zone
defects, and there are again three strain-rate regions where the fragmentation process is controlled by a
quasistatic mechanism, an internal defect mechanism, and a kinetic mechanism. Fig. 10b shows that the
rate-hardening phenomenon is again observed in the defect-distribution controlled strain-rate region, but
the failure strength limit (at high rates) for the zone defects is different from that for the point defects.
The maximum failure strength for the bar with the zone defects is three quarters between o, and opax:

hm (Gpeak) = Omin + %(O—max -

£p—00

O—min) .

5197

(24)
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This maximum arises because for the zone defect distribution shown in Fig. 8, the average value of the local
material strength is (a.),,. = N#Hzgloc (X,) = omintiom We conclude that as strain rate increases, the fail-

ure strength of the bar approaches the average value of the local material strength. This reflects the trend
that the bar’s failure strength changes from the “weakest link” value to the “average” value.

5.2. Randomly-distributed point defects

A randomly-distributed point defect model is now considered. In this model, half of the internal
nodes (25,000 out of the 50,000) are randomly chosen as internal defects. The local failure strength
and the local fracture energy are reduced by a random factor between 50% and 100%, with the strengths
and local fracture energies chosen from a uniform strength distribution. Since the failure strength in the
uniform (defect-free) bar was 300 MPa, the strengths of the 25,000 “defect” points lie between
Omin = 150 MPa and o,,,, = 300 MPa. Note the locations of these defects are now random. The other
25,000 points are intact, with the failure strength ¢.,,x =300 MPa as before. The calculated
log(s)-log(&) and ope—log(éy) relationships for such a bar with random defects are plotted as the
downward triangles in Fig. 10a and b respectively. The log(s) — log(éy) curve of the bar with random
defects differs from that of the bar with equal spaced defects in three ways. First, though not shown
in Fig. 10a, the average fragment size increases (for the bar with random defects) to up to half of
the specimen length if the strain rate is extremely low (&, < 10~} s1). In other words, no quasistatic frag-
ment size as expressed by (11) exists. Although there is enough strain energy to form multiple fracture
surfaces, the lack of crack seeds prevented nucleation of these cracks in this case. Secondly, the current
log(s)—1log(&) curve for the bar with random defects is a smoothly decreasing curve without the defect-
interval controlled strain-rate region observed in the equally-spaced-defects case. This is reasonable, as
the randomly-distributed defect model has no intrinsic length scale. Finally, in the high strain-rate re-
gion, the average fragment size is about twice as large as the value in other cases (either without defects,
or with equally-spaced defects). The latter observation is particularly interesting, since it implies that at
very high loading rates, a bar with randomly-distributed defects breaks into larger pieces (on average)
than a bar without any defects. A possible explanation is that for a bar with random defects, the frag-
ment size distribution is narrower than that for a homogeneous bar (see the following results), which
may result in turn in larger fragment pieces. However, the reasons for this phenomenon are not yet clear
and will be the subject of future investigation.

Examining Fig. 10b, we see that the failure strength of the randomly-distributed-defects bar exhibits a
smoothened rate-hardening effect. As the strain rate increases, the bar’s failure strength increases gradually
from the weakest-link strength (omi,) to the average material strength, which is again ((36min + Omax)/4).
Thus the effect of the defect distribution on the failure strength is similar for the randomly-distributed
and equally-spaced cases, once the average material strength is considered. Note, however, that the rate-
dependence of the failure strength occurs later for the randomly-distributed case, and builds up over a lar-
ger range of strain rates.

The fragment size distributions are now presented for the case of the bar with randomly-distributed
defects. The fragment sizes for six strain-rate cases corresponding to 10%s™! 5x10%s~! 10%s7!,
5%10%s7!, 10°s7!, and 5x10°s™" were collected for statistical analysis. The total fragment number
from these six numerical tests is 5567. Fig. 1la plots the normalized cumulative fragment number
(®/N¢) against the normalized fragment size (s/5). These points are best fitted with a curve expressed
by Eq. (22), with fitting parameters of ¢ = 0.18, n = 2.65. Fig. 11b plots the unified probabilistic density
function expressed by Eq. (23), in comparison with the numerical test data. A good agreement between
the theoretical model and the numerical data is obtained. Several other observations follow:
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1. The span of the normalized fragment size is narrower in a bar with randomly-distributed defects than
that in the homogeneous bar. This results in a larger fitting parameter #. The normalized minimum frag-
ment size a = so/5 is smaller than that in the homogenous case.

2. The numerical data points, in all six strain-rate cases, are very close to the fitting curve. This means that
the function we proposed for the cumulative fragment size, Eq. (22), describes effectively fragment size
characteristics of a bar with random defects. Interestingly, one notes that in many respects, the fit is
better when including defects than without doing so.

6. Discussion

The main results of this paper are on the rate-dependencies of both the fragment size and the fragment size
distributions. The rate-dependence of fragment size is shown in Fig. 3. Our relationship differs from both the
Glenn—Chudnovsky theory and the Grady theory. In the quasistatic region our fragment size is about twice
the Glenn—Chudnovsky estimate, because of the stress wave propagation incited by the sudden unloading. In
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the very high strain-rate region our fragment size is about one quarter of Grady’s estimate. The reasons for
this latter difference are still being investigated. We conjecture that during the cohesive fracture process,
external work and global kinetic energy are consistently being converted into energy available for failure.
The internal impacts between fragments may facilitate this energy conversion process, resulting in the further
breakdown of large fragments. The size distributions may also play a role in the fragmentation process.

Our investigations on the sizes of the fragments show that the cumulative fragment numbers under dif-
ferent strain rates can be normalized into a master curve. This means that the fracture points along the bar,
though randomly distributed, observe a statistical law. The random fracture point locations along a homo-
geneous bar come from numerical fluctuations, while those along a randomly-defected bar come from inter-
nal defects. Compared to the homogeneous bar, the randomly defected bar exhibits a smoother cumulative
fragment number curve and a narrower size distribution. This suggests that the white-noise defect distribu-
tion helps smoothen the numerical fluctuations. Note that in this paper only a model ceramic system with
idealized defect distributions are studied. However, it is not difficult to adapt the current methodology to
study real materials with realistic defect/microstructure properties.

The similarity of the fragment size distribution under different strain rates is of fundamental importance.
We can now predict the number of fragments that a brittle bar will break into under a given strain rate.
Further, with a unified fragment size distribution function at hand, the sizes of these fragments are readily
estimated. Although in practice, loading conditions, internal defects, two-dimensional or three-dimensional
fracture, etc. may finally influence the fragmentation process, the above analysis at least provides qualita-
tive predictions of the fragmentation phenomenon.

The bars with initial defect distributions exhibit a rate-hardening property. This suggests that if the other
conditions are identical, the failure strength of a heterogeneous material is more strain-rate dependent than
the one corresponding to a homogeneous material. One simple way to understand this apparent “‘rate-hard-
ened strength’ is: brittle materials lose some defect sensitivity and therefore exhibit increased strength under
dynamic loading. The fact that the Weibull parameter influences the apparent rate-dependence of failure
strength was first pointed out by Grady and Kipp (1980). Lankford and Blanchard (1991) used this theory
to analyze their experimental results. Similar results have been obtained by Denoual and Hild (2000) and
Hild et al. (2003) through a probabilistic damage model, and by Zhou and Molinari (2004b) through finite
element simulations.

It is informative to compare our analysis with Shenoy and Kim (2003) work. Although both analyses
share common points, there exist significant differences between them. The largest difference is that in
Shenoy and Kim’s approach, the locations of defects are prescribed and are modeled as cohesive node-
couples at the very onset of loading, while in our approach the crack points are dynamically nucleated
at any possible point. The use in Shenoy and Kim (2003) of an exponential-type cohesive law brings addi-
tional flexibility to the system and it was of interest to test the effect of a different, and in some way more
robust, cohesive model on fragmentation. It should be added that Shenoy and Kim assumed that during the
unloading process, the cohesive opening distance is fixed, so that their partially opened cracks can never
close or contact. Our simulations show that the closure, contact, and internal impacts can be important
mechanisms in the fragmentation and energy transformation processes. While Shenoy and Kim did not
report results at lower strain rates, their “fragment size vs. strain rate” curves in the high strain-rate region
are similar to ours. The shape of fragment size distributions is also similar to ours. Shenoy and Kim devel-
oped an alternate approach called the dynamic mean field theory (DMFT). However, their fragment size
distribution is not directly amenable to comparison. As the DMFT is based on the assumptions that the
average (global) stress controls the growth behavior of each individual (local) crack, its fragment size results
are somewhat deviated from the exact solution (by a factor 2—1/2). In our research, the solution strategy is
straightforward and purely numerical; all unknown quantities are defined at discrete nodes and are solved
by a unified algorithm along the time axis. This strategy is highly efficient; therefore there is no need to
make further assumptions for approximate averaging analysis.
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7. Conclusions

In this paper we have developed a comprehensive methodology to analyze the fragmentation process in a
one-dimensional bar. The approach combines the elastic wave interaction process with the cohesive crack
opening process. Finite difference schemes along the characteristic lines are employed to obtain the solu-
tion. Mechanisms such as local strength distribution, dynamic crack initiation, crack opening/closing/con-
tact behavior, etc., are considered in the analysis.

The methodology has been applied to a model ceramic bar to systematically analyze its fragmentation
properties. The deformation of the bar spans a broad strain-rate region, from quasistatic to the very high
strain-rate cases. Critical issues such as average fragment size, fragment size distribution, failure strength of
the bar, influence of strain rate, influence of internal defect distribution, etc., are addressed. The major con-
clusions drawn from these analyses are listed as follows:

1. The average fragment size 5 decreases with strain rate &. In the very high ¢, region s is about 5 times
smaller than the Grady’s model estimate. In the quasistatic & region 5 is twice larger than the Glenn
and Chudnovsky’s estimate.

2. The cumulative fragment number function, &(s), changes with &. However, when s is normalized by the
average size 5(&), and @ is normalized by N¢(&) = L/5(&), the curves collapse onto a master curve. We
propose a unified exponential-type cumulative fragment number function (Eq. (21)) that fits numerical
data for all strain-rate cases. By differentiation, a unified probabilistic density function (UPDF) of the
fragment size (Eq. (23)) is obtained.

3. Internal defect distributions influence significantly the fragmentation process. One direct result of the
internal defects is the apparent rate-hardening of the material. As strain rate increases, the failure
strength of the bar increases from the weakest-link strength in the quasistatic region to the average mate-
rial strength in the very high strain-rate region.

4. If the internal defects are equally spaced along the bar, and the defect interval is smaller than the quasi-
static fragment size estimated by Eq. (11), then the 5-¢, relationship can be divided into three parts. In
the quasistatic strain-rate region, the average fragment size is approximately the value calculated by Eq.
(11). In the intermediate strain-rate region the average fragment size is exactly the interval between frag-
ments. In the very high strain-rate region, the internal defects have little effect on the average fragment
size, and the kinetic deformation process controls the fragmentation process.

5. Materials with randomly-distributed defects exhibit smooth, continuous 5—¢, relationship and a smooth
rate-hardening effect. The distributions of the fragment sizes are narrower than the homogeneous mate-
rials. The proposed UPDF characterizes the fragment size distribution very well.

This methodology can be conveniently adapted to other physical problems, such as the elastic—plastic
fragmentation, materials with realistic microstructures, and stochastic failure phenomena. Research inves-
tigating the influence of material parameters and grain-boundaries on the fragmentation process is cur-
rently underway.
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Appendix A. Finite difference scheme along characteristic lines
A.1. Spatial-time discretion

The bar is discretized into N + 1 nodes spaced by constant interval AX (AX = L/N). Any unknown var-
iable 1 (stress, velocity, etc.) is defined at the nodes:

fXut)=f(t)... (i=0,1,2,...,N). (A.1)

The unknown quantities are calculated by integration from time zero along the time axis. The integration
time step is taken as At, A = AX/c, where ¢ = \/E/p is the elastic wave speed, p the mass density. In this
way the X— plane is discreted into a rectangular mesh AX x Az. The nodes of the mesh are connected by the
characteristic lines observing dX/dr = #¢. Having calculated all the variables at the current time step ¢, the
stress and velocity at a node at the next time step # + At can be solved by using the elastodynamic equations
and the cohesive law.

A.2. Solutions of intact nodes

If the internal node 7 (0 <i< N) is not broken, at the next time step:
oi1(t) + o (t) | pc

oi(t+Ar) = T S 021 (2) = vi-a (2)]
v () + v (1) 1 . (A.2)
v;(t+ Ar) = f—i—z—pc[am(t) —o(t)] (=1,2,...,N—1).

The boundary nodes (i = 0, or i = N) are specifically treated by using the boundary conditions Eq. (2). The
stress and velocity at these nodes are

ao(t + At) = a,(t) — pcloL — v1(2)],
volt + At) = vy, (A.3)
on(t + Af) = oy (1) + pefor — vy-1 (1)),

on (¢ + Ar) = vg. (A4)

A.3. Solutions of broken nodes

All internal nodes are prone to be broken. When an intact node i nucleates as a crack, it breaks into a
pair of points: i~ and /. The superscripts “—"" and “+” denote the point to the left and to the right respec-
tively. The two points (i ~,i") have identical stress (o;), but different velocities (vi-,v;+) and spatial locations
(x;-,x+). The cohesive opening distance is: &, = x;+ — x;-.

The numerical scheme to solve an internal cracked node is illustrated in Fig. A.1. The two neighboring
nodes i — 1 and i+ 1 may also be cracked nodes. According to the compatibility relationship along the
characteristic lines, we have:
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o'coh = o;:oh (5cnh )I

dX/dt=c dX/di=—c

Beo
1+AL \ " /

At

5599595555555555555%9)

o B

Fig. A.1. Numerical scheme to solve for the state of an internal cracked point.

0i(t + At) — 0,1 (t) = pelo-(t + At) — vy (1)), (A.5)
oi(t + At) — 6,1 (t) = —pclvs(t + At) — vy (1)) (A.6)
The cohesive law is
0,(t + At) = Goon| Loy, (£ + AT) . (A.7)
The cohesive crack opening distance, calculated by the second order difference scheme, is
_ . At
O (1 + At) = 0, (1) + 5 {[vi= (t + At) + v+ (£)] — [vi-(t + At) + v~ (£)]}. (A.8)

From the above four algebraic equations (A.5)~(A.8), the four unknown quantities at time ¢+ Ar:
ot + A1), v (t + At), v+ (¢ + At), and I, (¢ + At), can be solved.

coh

A.4. Fully broken nodes and closed nodes

If a cracked node completely fails, it can no longer sustain any tensile stress. In this case the point is
treated as a free interface as long as it has positive crack opening displacement (Jd.on > 0). On the other
hand, if a partially or fully opened crack closes up completely, the two points that were separated are
brought into contact again (d.., = 0). In this situation, internal impact occurs, resulting in compressive
stress. In this case we tie up the two points of the cohesive crack, and use the velocity continuity relation-
ship, v;- (¢ + At) = v+ (¢t + At) to solve for the stress and velocity of the closed crack point. Physically, the
contacted crack point is equivalent to an intact point that allows a compressive wave to pass through,
so that Eq. (A.2) is again applied to compute its stress and velocity.

Appendix B. Calibrations of simulation
B.1. Effect of mesh density
Test calculations were conducted to study the effect of mesh density. We consider a bar of length

L =50 mm under & = 10° s™' (the high strain rates are the most critical as the cohesive fracture process
is very short, and so the time-step must be small enough to resolve this almost instantaneous process).
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The material parameters are the same as listed in Section 3. The total number of discrete points is 2501,
5001, 10,001, 25,001, 50,001, and 100,001. The mesh densities are 50 mm~!, 100 mm ™', 200 mm ',
500 mm~", 1000 mm~', and 2000 mm ', respectively. We plot the number of the fragments as functions
of time in Fig. B.1(a). This number starts from 1, increases rapidly after the bar fractures, and saturates
at the final fragment number N;. Fig. B.1(b) shows N; and the average fragment size s¢ (s = L/Ny) as func-
tions of the mesh density. A trend that Ny decreases with the increase of the segment (mesh) density is ob-
served, but when the segment density is larger than 1000 mm~' (AX = 1 pm), the calculation results are
convergent. [t seems that the observed ““mesh-dependence’” comes from numerical errors, where a small seg-
ment density represents coarse mesh and large time step. In our investigation, we chose the fixed discreti-
zation of AX =1 um with Az = 0.1 ns for the numerical calculations.

B.2. Effect of sample length

The length of the bar L should be large enough so that many fragments are formed, so that the number
of fragment samples can demonstrate a meaningful statistical property. To determine the adequate sample

1200 50 Seg/mm = 1200
4 E 1100 m
1000+ 4 1000
100 Segimm D 00
= g
.S 800 - = 800 u
E g 700 4
2 &5 € o] Fragment Number
= 1 6 1 s
Q 13 500
8 ‘s ] \._‘_/‘_-__—‘_
o 400+ g 400 4 u
£ H z 1
4 h 300 4 .
ks i | [ 2000 Segimm | = { Average Fragment Size }
m{ : 7
it 2 100 L o
{ i 8 lo* "
0 d - T T T T T 1 = 0 v T i3 T T T b T
00000 00002 00004 00005 00008 00010 00012 0 500 1000 1500 2000
(a) Time (ms) (b) Segment Density (Seg/mm)

Fig. B.1. Effects of mesh density on fragmentation, and consequent definition of sufficient mesh density: (a) fragment number vs. time
for various mesh densities; (b) dependences of N; and s; on mesh density.
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E— 8 200, Fragment Number
E 7]
ES =]
; g 700
a 600 @ 600
E 2
=
z 5 501
T 400 G 400
£ |5
E, 3 304
,E 200 e 2004 Average Fragment Size
o 100 ® ®
<
0 T T T T T ! 0 T T T T T
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0 20 40 60 80 100
(a) Time (ms) (b) Sample Length (mm)

Fig. B.2. Effects of sample length on fragment size and fragment number: (a) fragment number vs. time for different sample lengths; (b)
dependence of Ny and s¢ on sample length.
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length, we computed for bars with different lengths: L =2.5 mm, 5 mm, 10 mm, 25 mm, 50 mm, and
100 mm. All the bars are discretized with a mesh size AX = 1 um and are under & = 10° s~!. Fig. B.2(a)
plots the time histories of the total fragment number for the different bar lengths. The saturated fragment
number Ny and the average fragment size 5 are plotted against sample length in Fig. B.2(b). The average
fragment sizes are approximately the same for all bars. This means that the length of the bar, when above
2.5 mm, has little effect on the average fragment length. However, as we estimate fewer fragments when the
strain rate decreases to the quasistatic region, we chose the 50 mm bar as the standard sample.

Appendix C. Energy models of fragmentations in 1D, 2D, and 3D cases

Here we neglect the strain energy effect. Fig. C.1 shows three fragments in different dimensions: a 1D bar
of unit cross-section area, a 2D cylinder of unit length, and a 3D sphere. The dimension of each fragment
(the length for the bar, or the diameters for the cylinder and the sphere) is d. The volumes and the surfaces
of these fragments are

d (1D),

V=X nd*/4 (2D), (C.1.1)
nd*/6  (3D),
2 (ID),

S={nd (2D), (C.1.2)
nd*  (3D)

Each fragment expands at a uniform linear strain rate ¢ = d/d. The volume strain rate ¥/ /¥ and the relative
density rate p/p are expressed as

_ ' ¢ (1D,
;: <_§> — {2 (2D), (C2)
3¢ (3D)

Cross Section Area =1

¢=d/d

(a) (b) (c)
Fig. C.1. Expansions of (a) a 1D bar; (b) a 2D cylinder; (c) a 3D sphere.
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As the fragments are expanding outward uniformly, the material velocity relative to the center of each frag-
ment is linearly distributed, as

re[-d/2,d/2] (D),

— ri, C3
o) =ré o 0.d/2) (2D or 3D), )
and the local kinetical energy relative to the mass center can be evaluated as
O L 8) pdr = L pid® (D),
T/ — 0d/2 %(78)2/)(2757') dl" _ épéan4 (2D)’ (C4)
W2 L) p(dm?) dr = L pitnd®  (3D).
On the other side, the surface energy of the fragments are calculated using (C.1.2):
2%; =G, (ID)7
=8y, =< ndy =" (2D), (C.5)
nd? c
7td2’))c - % (3D)7

where 7y is the surface energy that is half of the fracture energy G.: y. = G./2.
C.1. The minimum total energy density theory

There exist two energy theories to estimate the fragment size. In the first theory, it is assumed that when
a fragment is created, its total energy density, namely (7" + I')/V takes the minimum (Grady, 1982). By
substituting (C.4), (C.5) and (C.1.1) into the stationary condition: W = 0, and with some mathemati-
cal manipulations, we obtain: '

(2%)" ap),
d= (@)1/3 (2D), (C.6)

pi?

(20@;)”3 (3D).

pE

C.2. The energy balance theory

According to this theory, when fragmentation happens, the local kinetical energy is converted into the
surface energy. By substituting (C.4) and (C.5) into the energy balance condition: 7" = I', we can obtain:

()" o)
d= (%)”3 (2D), (C.7)
(82)" e

Note that the fragment sizes estimated by the energy balance theory are v/2 ~ 1.26 times the minimum en-
ergy density estimates. In either problem the fragment size scales with strain rate by the (—2/3) power. The
1D case of the energy balance theory, i.e. the first equation in (C.7) is what we write as Eq. (7) in the paper.
Egs. (8) and (9) can be deduced similarly with the consideration of the strain energy term (Miller et al., 1999).
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